

公式

26. 微分係数と導関数、接線の方程式

■ 基本問題 🛮

図題 219 (1) 関数 $f(x) = x^3$ の x = 2 における微分係数を 定義に従って求めよ。

(2) 次の関数を微分せよ。

例題 (i) $f(x) = x^4 + 2x^3 + x + 1$

例題 (ii) $f(x) = (x+4)^3$

例題 (3) 曲線 $y=x^3+2x$ 上の点 (1, 3) における接線 の方程式を求めよ。

●xⁿ の微分

 $(x^n)' = nx^{n-1}$ k が定数なら、(k)' = 0

●接線の方程式

曲線 y=f(x) 上の 点 (a, f(a)) における接線の 方程式は,

y-f(a)=f'(a)(x-a)

■ 柱

図題 220*(1) 点 (1, 1) を通り、曲線 $y=x^3-4x+5$ に接する直線の方程式を求めよ。 (愛媛大)★

例題(2) t>0 とするとき、曲線 $C: y=x^2$ 上の点 $P(t, t^2)$ における C の法線 (Pを通り、Pにおける C の接線と直交する直線)は、点 (-2, 4) を通るという。そのとき、t の値をすべて求めよ。 (小樽商科大) \bigstar

考え方 (1) 曲線 y=f(x) 上にない定点を通る接線は、接点の座標を (a, f(a)) とおいて考える。

図題 221 曲線 $C: y = x^3 - 3x^2 - 9x + 8$ の x = 0 における接線の方程式を求めよ。また、この接線と平行な、曲線 C に関するもう 1 つの接線の接点の座標を求めよ。

222 座標平面上において、直線 y=kx-11 が曲線 $y=x^3-2x^2+5x-3$ と接するとき、 $k=\boxed{\textbf{P}}$ であり、接点の座標は $\boxed{\textbf{1}}$ である。また、接点と異なる交点の座標は $\boxed{\textbf{1}}$ である。

== A ==

図題 223 xy 平面上に 2 つの曲線 $y=x^3+3$, $y=x^3-1$ がある。この 2 つの曲線のどちらにも接する直線の方程式を求めよ。 (明治大) $\star\star$

図題 224 2 曲線 $y=2x^3+2x^2+a$, $y=x^3+2x^2+3x+b$ (a, b は定数) が接していて,接点における接線が点 (2, 15) を通るとき,a,b の値と接線の方程式を求めよ。 (明治大) $\star\star$

225 4次曲線 $C: y=f(x)=x^4-4x^2$ 上の点 P(t, f(t)) における接線 ℓ が P 以 外の 2 点で C と交わるような実数 t の範囲を求める。接線 ℓ の方程式は P である。したがって、4 次曲線 C と接線 ℓ との共有点の x 座標が満たす方程式は f となる。このうち、交点の x は $x \neq t$ であるから、方程式 f を満足する。したがって、求める実数 t の範囲は f となる。

(明治薬科大)★★

■ B

*226 放物線 $y=x^2-1$ 上にない点 (a, b) から, $y=x^2-1$ に接線を引くとする。 このとき,接線を 2 本引くことができるための必要十分条件は a と b を用 いて表すと, \boxed{P} であり,この 2 本の接線が垂直に交わるとき, $b=\boxed{1}$ である。 (改 立命館大) ***

公式

27. 関数の値の変化、最大・最小

■ 基本問題 ■

例題 227 (1) 関数 $y=x^3-3x^2-24x$ の極値を求め、グラフをかけ。

例題 (2) 関数 $y = -3x^4 + 4x^3 + 12x^2 - 2$ の極値を求め、 グラフをかけ。

例題 (3) 関数 $y=2x^3-9x^2+12x+3$ (0 $\leq x\leq 3$) の最大値、最小値を求めよ。

(4) 幅, 高さ、奥行きがそれぞれx, x, 5-2x の 直方体の体積 Vの最大値を求めよ。

●極大値,極小値の求め方

関数 f(x) の極値を求めるには、f'(x)=0 となる x の値を求め、増減表をかけばよい。f'(x)>0 の区間では、f(x) は増加し、f'(x)<0 の区間では、f(x) は減少する。

■ 柱

図題 228 3次関数 $f(x) = x^3 + ax^2 + bx$ が x = 3 で極値 -27 をとるとき,定数 a, b の値を求めよ。 (改 高知大) \star

考え方 x=a で極値をとるならば f'(a)=0 であるが、その逆は成り立たない。増減表をかいて x=a で極値をとるかどうかを確かめないといけない。

- **図題 229 ***(1) 関数 $f(x) = x^3 + (k-9)x^2 + (k+9)x + 1$ (k は定数) が極値をもたないような k の値の範囲を求めよ。 (千葉工業大) $\star\star$
 - (2) a を実数とする。関数 $f(x) = x^3 ax$ が区間 -1 < x < 1 において極値を とるような a の値の範囲を求めよ。 (改 早稲田大) $\star\star$
- **図題 230** a は a > 0 を満たす定数とする。関数 $f(x) = ax^3 3ax^2 + b$ $(-2 \le x \le 3)$ の最大値が 6. 最小値が -14 のとき、定数 a. b の値を求めよ。

A

- **231** 関数 $f(x) = x^3 kx^2 k^2x$ が極大値 5 をもつような定数 k の値を求めよ。 (名城大) **
- *232 $0^{\circ} \le \theta \le 180^{\circ}$ の範囲で、 θ の関数 $y = 4\sin^{3}\theta + 3\cos^{2}\theta + 1$ の最大値と最小値、およびそのときの θ の値を求めよ。 (宮城教育大) **
- **例題 233** 関数 $f(x) = x^3 + 3x^2 + ax$ について、次の問いに答えよ。ただし、a は定数である。
 - (1) f(x) が極大値と極小値をもつようなa のとりうる値の範囲を求めよ。
 - (2) f(x) が極大値と極小値をとるときの x の値をそれぞれ α , β ($\alpha < \beta$) とする。 $\alpha + \beta$ および $\alpha\beta$ を α で表せ。
 - (3) f(x) の極大値と極小値の和が 0 となるとき、a の値を求めよ。

(公立鳥取環境大)★★★

* $\mathbf{234}$ 半径 $\mathbf{1}$ の球に内接する高さ \mathbf{h} ,底面の半径 \mathbf{r} ,側面積 \mathbf{S} の直円錐がある。

- (1) rをhを用いて表せ。
- (2) $S \in h \in H$ いて表せ。
- (3) Sが最大となるときのh、r. Sの値をそれぞれ求めよ。 (名城大) $\star \star \star$

■ B

- **235** 実数 a に対し、関数 $f(x) = ax^3 \frac{3}{2}(a^2+1)x^2 + 3ax$ とおく。ただし、 $a \neq 0$ 解記 とする。
 - (1) f(x) が極値をもたないような a の値を求めよ。
 - (2) f(x) の極大値が正で、極小値が負となるようなa の値の範囲を求めよ。

(岐阜大)★★★

28. 方程式・不等式への応用

■ 基本問題 1

- **236** (1) x の 3 次方程式 $x^3 3x 3 = 0$ の実数解の個 数を求めよ。また、その実数解は、2 < x < 3の範 囲にあることを証明せよ。
- **例題** (2) x>0 のとき、次の不等式が成り立つことを証 明せよ。

$$x^3 - 9x \ge 3x - 16$$

●方程式への応用

方程式 f(x)=k の実数解は、 関数 v = f(x) のグラフと直線 y=kの共有点のx座標であ

●不等式への応用

 $f(x) \ge g(x)$ を示すには、 (f(x)-g(x) の最小値) ≥ 0 を示せばよい。

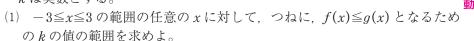
- **図題 237** (1) 方程式 $2x^3 12x^2 + 18x + k = 0$ が異なる 3 つの実数解をもつための定 数kの値の範囲を求めよ。 (久留米大)★
 - (2) 座標平面において、直線 y=4x+a と曲線 $y=x^3-6x^2+13x+2$ との共 有点の個数を調べよ。 (東京理科大)★★

考え方 文字定数を分離して考える。

*238 不等式 $x^4 - \frac{4}{3}x^3 - 4x^2 + k > 0$ がすべての実数 x について成り立つような定 数kの値の範囲を求めよ。

- **例題 239** 関数 $f(x) = x^3 + 2x^2 4x$ に対して、次の問いに答えよ。
 - (1) 曲線 y=f(x) 上の点 (t, f(t)) における接線の方程式を求めよ。
 - (2) 点 (0, k) から曲線 v=f(x) に引くことができる接線の本数を、k の値に よって調べよ。 (大阪市立大)★★

- **図題 240** (1) x についての方程式 $\frac{2}{3}x^3-x^2-4x+3=k$ が異なる 2 つの負の解と 1つの正の解をもつとき、 定数 k の値の範囲を求めよ。
 - (2) t についての方程式 $\frac{2}{3} \cdot 5^{3t} 5^{2t} 4 \cdot 5^{t} + 3 = k$ の実数解の個数が 1 つの とき、 定数 k の値の範囲を求めよ。
 - (3) θ についての方程式 $\frac{2}{3}\sin^3\theta \sin^2\theta 4\sin\theta + 3 = k$ ($0 \le \theta < 2\pi$) の実数 解の個数が2つのとき、 定数 k の値の範囲を求めよ。
 - **241** 2つの関数を $f(x) = 8x^2 + 16x k$, $g(x) = 2x^3 + 5x^2 + 4x$ とする。ただし、 \diamondsuit kは実数とする。



- (2) $-3 \le x_1 \le 3$, $-3 \le x_2 \le 3$ の範囲の任意の x_1 , x_2 に対して、つねに、 $f(x_1) \leq g(x_2)$ となるための k の値の範囲を求めよ。 (西南学院大) $\star \star \star$
- **図題 747** a を実数とする。3 次方程式 $x^3 + ax^2 a^2x 5 = 0$ が相異なる 3 つの実数解 をもつような a の値の範囲を求めよ。 (学習院大)★★★

図題 243 a を実数とし、関数 $f(x) = x^3 - 3ax + a$ を考える。 $0 \le x \le 1$ において $f(x) \ge 0$ となるような a の範囲を求めよ。

29. 積分の計算. 定積分を含む関数

■ 基本問題 🛽

244 次の不定積分、定積分を求めよ。

例題 (1)
$$\int (2x^2+3x-2)dx - \int (3x^2-7x+5)dx$$

例題 (2)
$$\int (x^2+t)dt$$
 例題 (3) $\int_0^1 (4x-1)^2 dx$

例題 (4)
$$\int_{-2}^{2} (x^3 + 3x^2 + 5x + 1) dx$$

例題 (5)
$$\int_{-2}^{3} (x+2)(x-3)dx$$

●定積分の計算

f(x) の原始関数の1つを F(x) とするとき.

$$\int_{a}^{b} f(x) dx = \left[F(x) \right]_{a}^{b}$$
$$= F(b) - F(a)$$

●定積分の性質

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$
など QRJ公式 第

例題 248 2 つの整式 f(x), g(x) と、それらの導関数 f'(x), g'(x) の間に $f(x)-g(x)=x^2$, $f'(x)+g'(x)=5x^2+x+1$, g(0)=7 が成り立つとき f(x)を求めよ。 (近畿大)★★

⑨題 249 等式 $f(x) = \int_{-1}^{1} (x-t)f(t)dt + 7$ を満たす関数 f(x) を求めよ。

(立教大)★★

61

*250 d を実数の定数、f(t) を 2 次関数として、次の関数 F(x) を考える。

$$F(x) = \int_{a}^{x} f(t) dt$$

- (1) $F(d) = \boxed{7}$, $F'(x) = \boxed{1}$ \mathring{c} \mathring{b} \mathring{b} \mathring{b}
- (2) F(x) が x=1 で極大値 5, x=2 で極小値 4 をとるとき, f(t) および d を 求めよ。 (慶應義塾大)★★

251 t の関数 S(t) を, $S(t) = \int_{1}^{1} |x^2 - t^2| dx$ とする。このとき, S(1) の値を求め よ。また、 $0 \le t \le 1$ における S(t) の最大値と最小値、およびそのときの t の 値を求めよ。 (長崎大)★★★

図題 245 (1) 関数 f(x) が $f(x) = 2x^2 + 3x + \int_0^{\frac{1}{2}} f(t)dt$ を満たすとき, f(x) を求めよ。

(慶應義塾大)★

*(2) 等式
$$f(x) = \int_0^1 x^2 t f(t) dt + x + 1$$
 を満たす関数 $f(x)$ を求めよ。

考え方 (2) $\int_0^1 x^2 t f(t) dt$ は t についての積分なので、 $\int_0^1 x^2 t f(t) dt = x^2 \int_0^1 t f(t) dt$

246 (1) $\int_{2}^{x} (t^{2}+3t+1)dt$, $\int_{x}^{1} (t^{3}-t-1)dt$ をそれぞれ x で微分せよ。

例題(2) 関数f(x)と定数kが等式 $\int_{a}^{x} f(t)dt = 2x^2 - 4x + k$ を満たすとき, $f(x) = \boxed{P}$ \circlearrowleft , $k = \boxed{1}$ \circlearrowleft \circlearrowleft \circlearrowleft \circlearrowleft

(神奈川大)★

例題 (3) 実数 t に対して、 $f(t) = \int_0^t (x^2 - 5x + 6) dx$ とおく。関数 f(t) の極小値を 求めよ。 (東京電機大)★★

例題 247 (1) 定積分 $\int_{-2}^{2} (x+|x^2-1|)dx$ の値を求めよ。

(神奈川大)★★

⑨題 (2) a が $0 \le a \le 3$ を満たす定数のとき、 $\int_{a}^{3} |t-a|dt$ を求めよ。

考え方 絶対値の中の式が 0 以上、0 以下となる区間に分けて計算する。

***252** *a* を実数とする。

- (1) 定積分 $\int_{1}^{1} |x^2 ax| dx$ を求めよ。
- (2) この定積分の値を最小にする a の値と、そのときの定積分の値を求めよ。

(弘前大)★★★★

30. 面 積

■基本問題

253 次の曲線や直線で囲まれた部分の面積を求めよ。

例題 (1) $y = -x^2 + x + 2$ ($x \ge 0$), x 軸, y 軸, x = 3

例題 (2) $y=2x^2+2x-4$, x 軸

例題 (3) $y=x^2+3x-1$, y=x+2

例題(4) $y=x^2-x$, $y=-x^2+3x+4$

●面積

まず、曲線や直線の共有点のx座標を求めて、グラフをかく。その後、グラフの上下関係に注意して定積分を計算する。

■柱

図題 254 (1) 曲線 $C: y = -x^3 + 3x^2 + 3x - 4$ と直線 $\ell: y = 2x - 1$ の共有点の x 座標 を求めよ。また、曲線 C と直線 ℓ によって囲まれた部分の面積を求めよ。

*

図題 (2) 曲線 $y=x^3-4x$ と、その曲線上の点 (1, -3) における接線とで囲まれた部分の面積を求めよ。 (南山大)★

図題 255 関数 $f(x) = x^2 - 3x + 2$ および座標平面上の曲線 C: y = f(x) について、次の問いに答えよ。

- (1) 点(2, -1)から曲線Cに異なる2本の接線が引ける。それぞれの接線の方程式と接点の座標を求めよ。
- (2) 曲線 C と, (1)で求めた 2 本の接線によって囲まれた部分の面積 S を求めよ。 (改 宮崎大) $\star\star$

図題 256 xy 平面において、直線 y=kx が、曲線 $y=x^2-4x$ と x 軸で囲まれる部分の面積 S を 2 等分するとき、k= $\boxed{\textbf{P}}$ であり、S= $\boxed{\textbf{1}}$ である。

(関西学院大)★★

257 曲線 $y = |3x^2 - 6x|$ と直線 y = 3x で囲まれた部分の面積を求めよ。

(久留米大)★★

A

例題 258 xy 平面上の曲線 $C: y=|2x-1|-x^2+2x+1$ について

- (1) 曲線 *C* の概形をかけ。
- (2) 直線 ℓ が曲線Cと異なる2点において接するとき、 ℓ の方程式を求めよ。
- (3) (2)の直線 ℓ と曲線 Cで囲まれた図形の面積 Sを求めよ。 (改 岡山大) $\star\star$

図題 259 放物線 $C: y=2x^2$ と、点 (1, 5) を通り傾きが m である直線 ℓ について、 次の問いに答えよ。

- (1) $C \ge \ell$ が異なる 2 点で交わることを示せ。
- (2) Cと ℓ で囲まれた部分の面積Sをmの式で表せ。
- (3) (2)の面積Sが最小となるとき、直線 ℓ の方程式を求めよ。

(東京電機大)★★★

- *260 曲線 $C: y=x^3-x$ 上の点 $P(a, a^3-a)$ における接線を ℓ とし、曲線 Cと 接線 ℓ の点 P 以外の共有点を Q とする。ただし、a>0 とする。
 - (1) 点Qのx座標をaを用いて表せ。
 - (2) 曲線 Cと接線 ℓ とで囲まれた部分の面積 S_1 を a を用いて表せ。
 - (3) 点 Q における曲線 C の接線を m とする。曲線 C と接線 m とで囲まれた 部分の面積を S_2 とするとき, $\frac{S_2}{S_1}$ は a の値によらず一定であることを示せ。

(改 福岡教育大)★★★

■ B ■

図題 261 a を実数とし、 $f(x)=x-x^3$ 、 $g(x)=a(x-x^2)$ とする。2 つの曲線 y=f(x)、 p=g(x) は 0 < x < 1 の範囲に共有点をもつ。

- (1) aのとりうる値の範囲を求めよ。
- (2) y=f(x) と y=g(x) で囲まれた 2 つの部分の面積が等しくなるような a の値を求めよ。 (一橋大) $\bigstar \star \star \star \star$